Single-Cell

For all you seq...

00000

RNA Low-Level Detection

Integrated Techniques

References												
Act-Seq Wu Y. E. et al. (2017) Neuron 96(2): 313-329	DroNC-seq	Habib N. et al. (2017) Nat Methods 14(10): 955-958	IMS-MDA	Seth-Smith H. M. et al. (2013) Nat Protoc 8: 2404-2412	Nanogrid		scATAC-Seq	Cusanovich D. A. et al. (2015) Science 348: 910-4 (Cell Index)	SCRB-Seq	Soumillon M. et al. (2014) bioRxiv: 003236	snmC-Seq	Luo C. et al. (2017) Science 357(6351): 600
CEL-Seq Hashimshony T. et al. (2012) Cell Rep 2: 666-673	Drop-Seq	Macosko E. Z. et al. (2015) Cell 161: 1202-1214	inDrop	Klein A. M. et al. (2015) Cell 161: 1187-201	SNRS	Gao R. et al. (2017) Nat Commun 8(1): 228	scChip-seq	Rotem A. et al. (2015) Nat Biotechnol 33: 1165-72	scTHS-seq	Lake B. B. et al. (2018) Nature Biotechnology 36(1): 70-80	snRNA-seq	Grindberg R. V. et al. (2013) Proc Natl Acad Sci USA 110:
CirSeq Acevedo A. et al. (2014) Nature 505: 686-690	DR-Seq	Dey S. S. et al. (2015) Nat Biotechnol 33: 285-9	LIANTI	Chen C. et al. (2017) Science 356(6334): 189-194	nuc-seq	Wang Y. et al. (2014) Nature 512: 155-160	scCool-seq	Li L. et al. (2018) Nature Cell Biology 20(7): 847-858	scTrio-seq	Hou Y. et al. (2016) Cell Res 26: 304-19		19802-7
CITE-Seq Stoeckius M., et al. (2017) Nat Methods 14(9): 865-868	Drop-ChIP	Rotem A. et al. (2015) Nat Biotechnol 33: 1165-72	MALBAC	Zong C. et al. (2012) Science 338: 1622-1626	Nuc-Seq/SNES	Leung M. L. et al. (2015) Genome Biology 16(1): 55	sciHi-C	Ramani V. et al. (2017) Nature Methods 14: 263	scTrio-seq2	Bian S. et al. (2018) Science 362(6418): 1060	SPLIT-seq	Rosenberg A. B. et al. (2018) Science 360(6385): 176
CLaP Binan L. et al. (2016) Nat Commun 7: 11636	Duplex-Seq	Schmitt M. W. et al. (2012) Proc Natl Acad Sci USA 109:	MARS-seq	Jaitin D. A. et al. (2014) Science 343:776-9	OS-Seq	Myllykangas S. et al. (2011) Nat Biotechnol 29: 1024-1027	sci-CAR	Cao J. et al. (2018) Science 361(6409): 1380	Seq-Well	Gierahn T. M., et al. (2017). Nat Methods 14(4): 395-398	SIRI	Islam S. et al. (2011) Genome Res 21: 1160-1167
CRISPR-UMI Michlits G. et al. (2017) Nat Methods 14(12): 1191-1197		14508-14513	MATQ-seq	Sheng K. et al. (2017) Nat Methods 14(3): 267-270	PAIR	Bell T. J. et al. (2015) Methods Mol Biol 1324: 457-68	sci-DNA-seq	Rosenberg A. B. et al. (2018) Science 360: 176-182	SIDR	Han K. Y. et al. (2018) Genome Research 28(1): 75-87	SUPER-seq	Fan X. et al. (2015) Genome Blol 16: 148
CROP-Seq Datlinger P. et al. (2017) Nat Methods 14(3): 297-301	ECCITE-seq	Mimitou E. P. et al. (2019) Nat Methods 16(5): 409-412	MDA	Dean F. B. et al. (2001) Genome Res 11: 1095-1099	Quartz-Seq	Sasagawa Y. et al. (2013) Genome Biol 14: R31	sci-MET	Mulqueen R. M. et al. (2018) Nature Biotechnology 36: 428	SINC-seq	Abdelmoez M. N. et al. (2018) Genome Biology 19(1): 66	Deiring	Turchaninova M. A. et al. (2012) Eur J Immunol 42:
CytoSeq Fan H. C. et al. (2015) Science 347: 1258367	FREQ-Seq	Chubiz L. M. et al. (2012) PLoS One 7: e47959	Microwell-seq	Han X. et al. (2018) Cell 172(5): 1091-1107.e1017	Quartz-Seq2	Sasagawa Y. et al. (2018) Genome Biology 19(1): 29	sci-RNA-seq	Cao J. et al. (2017) Science 357(6352): 661	Smart-Seq	Ramskold D. et al. (2012) Nat Biotechnol 30: 777-782	Pairing	2507-2515
Digital RNA Shiroguchi K. et al. (2012) Proc Natl Acad Sci USA	FRISCR	Thomsen E. R. et al. (2016) Nat Methods 13: 87-93	MIDAS	Gole J. et al. (2013) Nat Biotechnol 31:1126-32	RamDA-seq	Hayashi T. et al. (2018) Nature Communications 9(1): 619	SCMDA	Dong X. et al. (2017) Nature Methods 14: 491	Smart-seq2	Picelli S. et al. (2013) Nat Methods 10: 1096-1098v	TCR-LA-MC-PC	R Ruggiero E. et al. (2015) Nat Commun 6: 8081
109:1347-1352	G&T-seq	Macaulay I. C. et al. (2015) Nat Methods 12: 519-522	MIPSTR	Carlson K. D. et al. (2015) Genome Res 25: 750-761	RNAtag-Seq	Shishkin A. A. et al. (2015) Nat Methods 12: 323-325	scM&T-seq	Angermueller C. et al. (2016) Nature Methods 13: 229	SMDB	Lan F. et al. (2016) Nat Commun 7: 11784	TIVA	Lovatt D. et al. (2014) Nat Methods 11: 190-196
Dip-C Tan L., et al. (2018) Science 361(6405): 924-928	HiRes-Seq	Imashimizu M. et al. (2013) Nucleic Acids Res 41:	Mosaic-seq	Han X. et al. (2018) Cell 172(5): 1091-1107 e1017	Safe-SeqS	Kinde I. et al. (2011) Proc Natl Acad Sci USA 108: 9530-5	scNMT-seq	Clark S. J. et al. (2018) Nature Communications 9(1): 781	smMIP	Hiatt J. B. et al. (2013) Genome Res 23: 843-854	TSCS	Casasent A. K. et al. (2018) Cell 172(1): 205-217.e212
Div-Seq Habib N. et al. (2016) Science 353(6302): 925-928		9090-9104	MULTI-seq	McGinnis C. S. et al. (2019) Nat Methods 16(7): 619-626	scABA-seq	Mooijman D. et al. (2016) Nature Biotechnology 34: 852	scRC-Seq	Upton K. R. et al. (2015) Cell 161: 228-39	snDrop-seq	Lake B. B. et al. (2018) Nature Biotechnology 36(1): 70-80	UMI Method	Kivioja T. et al. (2012) Nat Methods 9: 72-74
DP-Seq Bhargava V. et al. (2013) Sci Rep 3: 1740	HI-SCL	Rotem A. et al. (2015) PLoS One 10: e0116328	NanoCAGE	Plessy C. et al. (2010) Nat Methods 7: 528-534	scATAC-seq	Buenrostro J. D. et al. (2015) Nature 523: 486-490 (Microfluidics)	scRNA-seq	Tang F. et al. (2009) Nat Methods 6: 377-82	SNES	Leung M. L. et al. (2015) Genome Biol 16: 55	viscRNA-seq	Zanini F. et al. (2018) Elife 7: e32942

For Research Use Only. Not for use in diagnostic procedures.

This poster was compiled by the Illumina Scientific Affairs. Additional information, the latest version of the poster, and a comprehensive list of *seq methods. Please contact Scientific Affairs with any questions, comments, or suggestions.

© 2020 Illumina, Inc. All rights reserved. Illumina, Inc. • 5200 Illumina Way, San Diego, CA 92122 USA • 1.800.809.4566 toll-free • 1.858.202.4566 tel • techsupport@illumina.com • illumina.com

Illumina, HiSeq, MiSeq, MiniSeq, Nextera, NextSeq, TruSeq, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners. Pub. No. 770-2020-002-A QB9466. Current as of 14 April 2020.

SureCell[™] WTA 3′

landscape sequencing (scCOOL-Seq)

